Abstract
AbstractGWAS cannot identify functional SNPs (fSNP) from disease-associated SNPs in linkage disequilibrium (LD). Here, we report developing three sequential methodologies including Reel-seq (Regulatory element-sequencing) to identify fSNPs in a high-throughput fashion, SDCP-MS (SNP-specific DNA competition pulldown-mass spectrometry) to identify fSNP-bound proteins and AIDP-Wb (allele-imbalanced DNA pulldown-Western blot) to detect allele-specific protein:fSNP binding. We first apply Reel-seq to screen a library containing 4316 breast cancer-associated SNPs and identify 521 candidate fSNPs. As proof of principle, we verify candidate fSNPs on three well-characterized loci: FGFR2, MAP3K1 and BABAM1. Next, using SDCP-MS and AIDP-Wb, we rapidly identify multiple regulatory factors that specifically bind in an allele-imbalanced manner to the fSNPs on the FGFR2 locus. We finally demonstrate that the factors identified by SDCP-MS can regulate risk gene expression. These data suggest that the sequential application of Reel-seq, SDCP-MS, and AIDP-Wb can greatly help to translate large sets of GWAS data into biologically relevant information.
Funder
Aging Institute, University of Pittsburgh Medical Center
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献