One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells

Author:

Yang Tinghuan,Gao Lili,Lu Jing,Ma Chuang,Du Yachao,Wang Peijun,Ding Zicheng,Wang Shiqiang,Xu Peng,Liu Dongle,Li Haojin,Chang Xiaoming,Fang Junjie,Tian WenmingORCID,Yang Yingguo,Liu ShengzhongORCID,Zhao Kui

Abstract

AbstractEven though the perovskite solar cell has been so popular for its skyrocketing power conversion efficiency, its further development is still roadblocked by its overall performance, in particular long-term stability, large-area fabrication and stable module efficiency. In essence, the soft component and ionic–electronic nature of metal halide perovskites usually chaperonage large number of anion vacancy defects that act as recombination centers to decrease both the photovoltaic efficiency and operational stability. Herein, we report a one-stone-for-two-birds strategy in which both anion-fixation and associated undercoordinated-Pb passivation are in situ achieved during crystallization by using a single amidino-based ligand, namely 3-amidinopyridine, for metal-halide perovskite to overcome above challenges. The resultant devices attain a power conversion efficiency as high as 25.3% (certified at 24.8%) with substantially improved stability. Moreover, the device without encapsulation retained 92% of its initial efficiency after 5000 h exposure in ambient and the device with encapsulation retained 95% of its initial efficiency after >500 h working at the maximum power point under continuous light irradiation in ambient. It is expected this one-stone-for-two-birds strategy will benefit large-area fabrication that desires for simplicity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3