Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability

Author:

Dai Zhenghong1ORCID,Yadavalli Srinivas K.1,Chen Min1,Abbaspourtamijani Ali1ORCID,Qi Yue1ORCID,Padture Nitin P.1ORCID

Affiliation:

1. School of Engineering, Brown University, Providence, RI 02912, USA.

Abstract

Tougher solar cell interfaces The low formation energies of the active layers in perovskite solar cells lead to low-toughness materials that are compliant and soft, which limits their interface stability and long-term reliability. Dai et al. show that treatment with iodine-terminated self-assembled monolayers that react with surface hydroxyl groups (which ultimately creates unwanted charge traps and voids) leads to a 50% increase of adhesion toughness between the electron transport layer and a mixed-composition perovskite thin film. The projected point at which 80% of the operating efficiency in perovskite solar cells was still retained increased from ∼700 to 4000 hours for 1-sun exposure with continuous maximum power point tracking. Science , this issue p. 618

Funder

National Science Foundation

Office of Naval Research

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3