Abstract
AbstractDNA double-strand breaks (DSB) are repaired by multiple distinct pathways, with outcomes ranging from error-free repair to mutagenesis and genomic loss. DSB-repair pathway cross-talk and compensation is incompletely understood, despite its importance for genomic stability, oncogenesis, and genome editing using CRISPR/Cas9. To address this, we constructed and validated three fluorescent Cas9-based reporters, named DSB-Spectrum, that simultaneously quantify the contribution of multiple DNA repair pathways at a DSB. DSB-Spectrum reporters distinguish between DSB-repair by error-free canonical non-homologous end-joining (c-NHEJ) versus homologous recombination (HR; reporter 1), mutagenic repair versus HR (reporter 2), and mutagenic end-joining versus single strand annealing (SSA) versus HR (reporter 3). Using these reporters, we show that inhibiting the c-NHEJ factor DNA-PKcs increases repair by HR, but also substantially increases mutagenic SSA. Our data indicate that SSA-mediated DSB-repair also occurs at endogenous genomic loci, driven by Alu elements or homologous gene regions. Finally, we demonstrate that long-range end-resection factors DNA2 and Exo1 promote SSA and reduce HR, when both pathways compete for the same substrate. These new Cas9-based DSB-Spectrum reporters facilitate the comprehensive analysis of repair pathway crosstalk and DSB-repair outcome.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献