Abstract
AbstractFerroelectric materials possess a spontaneous polarization that is switchable by an electric field. Robust retention of switched polarization is critical for non-volatile nanoelectronic devices based on ferroelectrics, however, these materials often suffer from polarization relaxation, typically within days to a few weeks. Here we exploit designer-defect-engineered epitaxial BiFeO3 films to demonstrate polarization retention with virtually no degradation in switched nanoscale domains for periods longer than 1 year. This represents a more than 2000% improvement over the best values hitherto reported. Scanning probe microscopy-based dynamic switching measurements reveal a significantly increased activation field for domain wall movement. Atomic resolution scanning transmission electron microscopy indicates that nanoscale defect pockets pervade the entire film thickness. These defects act as highly efficient domain wall pinning centres, resulting in anomalous retention. Our findings demonstrate that defects can be exploited in a positive manner to solve reliability issues in ferroelectric films used in functional devices.
Funder
Department of Education and Training | Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献