Abstract
AbstractDuring the last two decades, two-dimensional (2D) materials have been the focus of condensed matter physics and material science due to their promising fundamental properties and (opto-)electronic applications. However, high-κ 2D dielectrics that can be integrated within 2D devices are often missing. Here, we propose nonlayered oxide monolayers with calculated exfoliation energy as low as 0.39 J/m2 stemming from the ionic feature of the metal oxide bonds. We predict 51 easily or potentially exfoliable oxide monolayers, including metals and insulators/semiconductors, with intriguing physical properties such as ultra-high κ values, negative Poisson’s ratios and large valley spin splitting. Among them, the most promising dielectric, GeO2, exhibits an auxetic effect, a κ value of 99, and forms type-I heterostructures with MoSe2 and HfSe2, with a band offset of ~1 eV. Our study opens the way for designing nonlayered 2D oxides, offering a platform for studying the rich physics in ultra-thin oxides and their potential applications in future information technologies.
Funder
Natural Science Foundation of Guangdong Province
Shenzhen Science and Technology Innovation Commission
National Key R&D Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献