Abstract
AbstractAchieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of −39% and a giant planar Hall effect (520 μΩ⋅cm) at room temperature under 9 T in β-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering — induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity — as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized β-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献