Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

Author:

Mueller Yvonne M.ORCID,Schrama Thijs J.ORCID,Ruijten Rik,Schreurs Marco W. J.,Grashof Dwin G. B.ORCID,van de Werken Harmen J. G.ORCID,Lasinio Giovanna JonaORCID,Álvarez-Sierra DanielORCID,Kiernan Caoimhe H.,Castro Eiro Melisa D.ORCID,van Meurs Marjan,Brouwers-Haspels IngeORCID,Zhao Manzhi,Li Ling,de Wit Harm,Ouzounis Christos A.,Wilmsen Merel E. P.,Alofs Tessa M.,Laport Danique A.,van Wees Tamara,Kraker Geoffrey,Jaimes Maria C.,Van Bockstael Sebastiaan,Hernández-González Manuel,Rokx CasperORCID,Rijnders Bart J. A.,Pujol-Borrell Ricardo,Katsikis Peter D.ORCID

Abstract

AbstractQuantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient’s immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.

Funder

EC | Horizon 2020 Framework Programme

Ministry of Economy and Competitiveness | Instituto de Salud Carlos III

EC | European Regional Development Fund

Erasmus foundation Health Holland LSHM20056 grant

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3