Abstract
AbstractThe harvesting of ‘hot’ triplet excitons through high-lying reverse intersystem crossing mechanism has emerged as a hot research issue in the field of organic light-emitting diodes. However, if high-lying reverse intersystem crossing materials lack the capability to convert ‘cold’ T1 excitons into singlet ones, the actual maximum exciton utilization efficiency would generally deviate from 100%. Herein, through comparative studies on two naphthalimide-based compounds CzNI and TPANI, we revealed that the ‘cold’ T1 excitons in high-lying reverse intersystem crossing materials can be utilized effectively through the triplet-triplet annihilation-mediated high-lying reverse intersystem crossing process if they possess certain triplet-triplet upconversion capability. Especially, quite effective triplet-triplet annihilation-mediated high-lying reverse intersystem crossing can be triggered by endowing the high-lying reverse intersystem crossing process with a 3ππ*→1nπ* character. By taking advantage of the permanent orthogonal orbital transition effect of 3ππ*→1nπ*, spin–orbit coupling matrix elements of ca. 10 cm−1 can be acquired, and hence ultra-fast mediated high-lying reverse intersystem crossing process with rate constant over 109 s−1 can be realized.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献