Deep Learning Prediction of Triplet–Triplet Annihilation Parameters in Blue Fluorescent Organic Light‐Emitting Diodes

Author:

Lim Junseop1,Kim Jae‐Min2ORCID,Lee Jun Yeob13ORCID

Affiliation:

1. School of Chemical Engineering Sungkyunkwan University 2066, Seobu‐ro Jangan‐gu, Suwon‐si Gyeonggi‐do 16419 Republic of Korea

2. Department of Advanced Materials Engineering Chung‐Ang University 4726, Seodong‐daero Daedeok‐myeon, Anseong‐si Gyeonggi‐do 17546 Republic of Korea

3. SKKU Institute of Energy Science and Technology Sungkyunkwan University 2066, Seobu‐ro, Jangan‐gu Suwon Gyeonggi 16419 Republic of Korea

Abstract

AbstractThe triplet–triplet annihilation (TTA) ratio and the rate coefficient (kTT) of TTA are key factors in estimating the contribution of triplet excitons to radiative singlet excitons in fluorescent TTA organic light‐emitting diodes. In this study, deep learning models are implemented to predict key factors from transient electroluminescence (trEL) data using new numerical equations. A new TTA model is developed that considers both polaron and exciton dynamics, enabling the distinction between prompt and delayed singlet decays with a fundamental understanding of the mechanism. In addition, deep learning models for predicting the kinetic coefficients and TTA ratio are established. After comprehensive optimization inspired by photophysics, determination coefficient values of 0.992 and 0.999 are achieved in the prediction of kTT and TTA ratio, respectively, indicating a nearly perfect prediction. The contribution of each kinetic parameter of polaron and exciton dynamics to the trEL curve is discussed using various deep‐learning models.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3