Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients

Author:

Tsai Pei-ChenORCID,Lee Tsung-Hua,Kuo Kun-Chi,Su Fang-Yi,Lee Tsung-Lu MichaelORCID,Marostica ElianaORCID,Ugai Tomotaka,Zhao Melissa,Lau Mai Chan,Väyrynen Juha P.ORCID,Giannakis Marios,Takashima Yasutoshi,Kahaki Seyed Mousavi,Wu Kana,Song Mingyang,Meyerhardt Jeffrey A.,Chan Andrew T.ORCID,Chiang Jung-HsienORCID,Nowak Jonathan,Ogino ShujiORCID,Yu Kun-HsingORCID

Abstract

AbstractHistopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients’ histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Google

Harvard Medical School

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3