The Normalization of Vaping on TikTok Using Computer Vision, Natural Language Processing, and Qualitative Thematic Analysis: Mixed Methods Study

Author:

Jung SungwonORCID,Murthy DhirajORCID,Bateineh Bara SORCID,Loukas AlexandraORCID,Wilkinson Anna VORCID

Abstract

Background Social media posts that portray vaping in positive social contexts shape people’s perceptions and serve to normalize vaping. Despite restrictions on depicting or promoting controlled substances, vape-related content is easily accessible on TikTok. There is a need to understand strategies used in promoting vaping on TikTok, especially among susceptible youth audiences. Objective This study seeks to comprehensively describe direct (ie, explicit promotional efforts) and indirect (ie, subtler strategies) themes promoting vaping on TikTok using a mixture of computational and qualitative thematic analyses of social media posts. In addition, we aim to describe how these themes might play a role in normalizing vaping behavior on TikTok for youth audiences, thereby informing public health communication and regulatory policies regarding vaping endorsements on TikTok. Methods We collected 14,002 unique TikTok posts using 50 vape-related hashtags (eg, #vapetok and #boxmod). Using the k-means unsupervised machine learning algorithm, we identified clusters and then categorized posts qualitatively based on themes. Next, we organized all videos from the posts thematically and extracted the visual features of each theme using 3 machine learning–based model architectures: residual network (ResNet) with 50 layers (ResNet50), Visual Geometry Group model with 16 layers, and vision transformer. We chose the best-performing model, ResNet50, to thoroughly analyze the image clustering output. To assess clustering accuracy, we examined 4.01% (441/10,990) of the samples from each video cluster. Finally, we randomly selected 50 videos (5% of the total videos) from each theme, which were qualitatively coded and compared with the machine-derived classification for validation. Results We successfully identified 5 major themes from the TikTok posts. Vape product marketing (1160/10,990, 8.28%) reflected direct marketing, while the other 4 themes reflected indirect marketing: TikTok influencer (3775/14,002, 26.96%), general vape (2741/14,002, 19.58%), vape brands (2042/14,002, 14.58%), and vaping cessation (1272/14,002, 9.08%). The ResNet50 model successfully classified clusters based on image features, achieving an average F1-score of 0.97, the highest among the 3 models. Qualitative content analyses indicated that vaping was depicted as a normal, routine part of daily life, with TikTok influencers subtly incorporating vaping into popular culture (eg, gaming, skateboarding, and tattooing) and social practices (eg, shopping sprees, driving, and grocery shopping). Conclusions The results from both computational and qualitative analyses of text and visual data reveal that vaping is normalized on TikTok. Our identified themes underscore how everyday conversations, promotional content, and the influence of popular figures collectively contribute to depicting vaping as a normal and accepted aspect of daily life on TikTok. Our study provides valuable insights for regulatory policies and public health initiatives aimed at tackling the normalization of vaping on social media platforms.

Publisher

JMIR Publications Inc.

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3