Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts

Author:

Schiff Lauren,Migliori Bianca,Chen Ye,Carter Deidre,Bonilla Caitlyn,Hall JennaORCID,Fan Minjie,Tam Edmund,Ahadi Sara,Fischbacher BrodieORCID,Geraschenko Anton,Hunter Christopher J.,Venugopalan SubhashiniORCID,DesMarteau Sean,Narayanaswamy Arunachalam,Jacob Selwyn,Armstrong ZanORCID,Ferrarotto Peter,Williams BrianORCID,Buckley-Herd Geoff,Hazard Jon,Goldberg Jordan,Coram MarcORCID,Otto Reid,Baltz Edward A.,Andres-Martin Laura,Pritchard Orion,Duren-Lubanski Alyssa,Daigavane AmeyaORCID,Reggio Kathryn,Nelson Phillip C.,Frumkin Michael,Solomon Susan L.,Bauer Lauren,Aiyar Raeka S.,Schwarzbach Elizabeth,Noggle Scott A.,Monsma Frederick J.,Paull DanielORCID,Berndl MarcORCID,Yang Samuel J.ORCID,Johannesson BjarkiORCID,

Abstract

AbstractDrug discovery for diseases such as Parkinson’s disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson’s disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform’s robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson’s disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3