Improving Phenotypic Measurements in High-Content Imaging Screens

Author:

Ando D. MichaelORCID,McLean Cory Y.ORCID,Berndl Marc

Abstract

AbstractImage-based screening is a powerful technique to reveal how chemical, genetic, and environmental perturbations affect cellular state. Its potential is restricted by the current analysis algorithms that target a small number of cellular phenotypes and rely on expert-engineered image features. Newer algorithms that learn how to represent an image are limited by the small amount of labeled data for ground-truth, a common problem for scientific projects. We demonstrate a sensitive and robust method for distinguishing cellular phenotypes that requires no additional ground-truth data or training. It achieves state-of-the-art performance classifying drugs by similar molecular mechanism, using a Deep Metric Network that has been pre-trained on consumer images and a transformation that improves sensitivity to biological variation. However, our method is not limited to classification into predefined categories. It provides a continuous measure of the similarity between cellular phenotypes that can also detect subtle differences such as from increasing dose. The rich, biologically-meaningful image representation that our method provides can help therapy development by supporting high-throughput investigations, even exploratory ones, with more sophisticated and disease-relevant models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3