Abstract
AbstractThe proliferation of seismic networks in Australia has laid the groundwork for high-resolution probing of the continental crust. Here we develop an updated 3D shear-velocity model using a large dataset containing nearly 30 years of seismic recordings from over 1600 stations. A recently-developed ambient noise imaging workflow enables improved data analysis by integrating asynchronous arrays across the continent. This model reveals fine-scale crustal structures at a lateral resolution of approximately 1-degree in most parts of the continent, highlighted by 1) shallow low velocities (<3.2 km/s) well correlated with the locations of known sedimentary basins, 2) consistently faster velocities beneath discovered mineral deposits, suggesting a whole-crustal control on the mineral deposition process, and 3) distinctive crustal layering and improved characterization of depth and sharpness of the crust-mantle transition. Our model sheds light on undercover mineral exploration and inspires future multi-disciplinary studies for a more comprehensive understanding of the mineral systems in Australia.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献