Abstract
AbstractHistone deacetylase 3 (Hdac3) regulates the expression of lipid metabolism genes in multiple tissues, however its role in regulating lipid metabolism in the intestinal epithelium is unknown. Here we demonstrate that intestine-specific deletion of Hdac3 (Hdac3IKO) protects mice from diet induced obesity. Intestinal epithelial cells (IECs) from Hdac3IKO mice display co-ordinate induction of genes and proteins involved in mitochondrial and peroxisomal β-oxidation, have an increased rate of fatty acid oxidation, and undergo marked remodelling of their lipidome, particularly a reduction in long chain triglycerides. Many HDAC3-regulated fatty oxidation genes are transcriptional targets of the PPAR family of nuclear receptors, Hdac3 deletion enhances their induction by PPAR-agonists, and pharmacological HDAC3 inhibition induces their expression in enterocytes. These findings establish a central role for HDAC3 in co-ordinating PPAR-regulated lipid oxidation in the intestinal epithelium, and identify intestinal HDAC3 as a potential therapeutic target for preventing obesity and related diseases.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference56 articles.
1. Mariadason, J. M. HDACs and HDAC inhibitors in colon cancer. Epigenetics 3, 28–37 (2008).
2. Chueh, A. C., Tse, J. W., Togel, L. & Mariadason, J. M. Mechanisms of histone deacetylase inhibitor-regulated gene expression in cancer cells. Antioxid. Redox Signal. 23, 66–84 (2015).
3. Jonas, B. A. & Privalsky, M. L. SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J. Biol. Chem. 279, 54676–54686 (2004).
4. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002).
5. Jepsen, K. & Rosenfeld, M. G. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115, 689–698 (2002).
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献