Abstract
AbstractThe area law for entanglement provides one of the most important connections between information theory and quantum many-body physics. It is not only related to the universality of quantum phases, but also to efficient numerical simulations in the ground state. Various numerical observations have led to a strong belief that the area law is true for every non-critical phase in short-range interacting systems. However, the area law for long-range interacting systems is still elusive, as the long-range interaction results in correlation patterns similar to those in critical phases. Here, we show that for generic non-critical one-dimensional ground states with locally bounded Hamiltonians, the area law robustly holds without any corrections, even under long-range interactions. Our result guarantees an efficient description of ground states by the matrix-product state in experimentally relevant long-range systems, which justifies the density-matrix renormalization algorithm.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference50 articles.
1. Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).
2. Calabrese, P. & Cardy, John Entanglement entropy and quantum field theory. J. Stat. Mech. 2004, P06002 (2004).
3. Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).
4. Hastings, M. B. An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024–P08024 (2007a).
5. Arad, I., Landau, Z. & Vazirani, U. Improved one-dimensional area law for frustration-free systems. Phys. Rev. B 85, 195145 (2012).
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献