Automatic structural search of tensor network states including entanglement renormalization

Author:

Watanabe Ryo1,Ueda Hiroshi123

Affiliation:

1. Osaka University

2. RIKEN

3. Center for Computational Science (R-CCS)

Abstract

Tensor network (TN) states, including entanglement renormalization (ER), can encompass a wider variety of entangled states. When the entanglement structure of the quantum state of interest is nonuniform in real space, accurately representing the state with a limited number of degrees of freedom hinges on appropriately configuring the TN to align with the entanglement pattern. However, a proposal has yet to show a structural search of ER due to its high computational cost and the lack of flexibility in its algorithm. In this study, we conducted an optimal structural search of TN, including ER, based on the reconstruction of their local structures with respect to variational energy. First, we demonstrated that our algorithm for the spin-1/2 tetramer singlets model could calculate exact ground energy using the multiscale entanglement renormalization ansatz (MERA) structure as an initial TN structure. Subsequently, we applied our algorithm to the random XY models with the two initial structures: MERA and the suitable structure underlying the strong disordered renormalization group. We found that, in both cases, our algorithm achieves improvements in variational energy, fidelity, and entanglement entropy. The degree of improvement in these quantities is superior in the latter case compared to the former, suggesting that utilizing an existing TN design method as a preprocessing step is important for maximizing our algorithm's performance. Published by the American Physical Society 2024

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Corporation

Osaka University

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3