Abstract
AbstractThe stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature’s most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices.
Funder
Stowers Institute for Medical Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献