CO2‐induced seawater acidification impairs the stinging cells of a jellyfish

Author:

Sun Tingting12,Li Yongxue13,Peng Saijun13,Wang Fanghan13,Wang Lei13,Zhao Jianmin12,Dong Zhijun12ORCID

Affiliation:

1. Muping Coastal Environment Research Station, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai Shandong China

2. Laboratory for Marine Biology and Biotechnology Qingdao Marine Science and Technology Center Qingdao Shandong China

3. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractCO2‐induced seawater acidification has been shown to modify predator–prey interactions in many marine taxa. Scyphozoans play an important role in the trophic dynamics of marine ecosystems during their blooms in coastal waters; however, the impacts of seawater acidification on the predation behavior of these animals are poorly understood. Here, we aimed to examine the impact of a decrease in seawater pH on the feeding behavior and growth of ephyrae (juvenile medusae) of the scyphozoan Aurelia coerulea. Combining bulk and single‐cell RNA sequencing approaches, we assessed transcriptomic changes of ephyrae under a laboratory‐based pH 7.6 condition. We found that the feeding rates and growth of ephyrae were significantly inhibited by a decrease in seawater pH. Furthermore, transcriptome analysis showed that a decline in pH significantly reduced the expression of genes related to toxins and nematocyst structure in ephyrae. These findings were further confirmed by single‐cell transcriptomic analyses and revealed that low pH impaired the toxin activity and energy metabolism of stinging cells. The pH recovery experiment indicated that moving ephyrae from seawater with pH 7.6 into seawater with pH 8.1 greatly restored their feeding, growth, and toxin‐related and nematocyst structure–related gene expression. However, exposure to pH 7.6 for 23 d could not recover the decrease in the feeding and growth of ephyrae. Together, these findings indicate that CO2‐induced acidification compromised the stinging cells of A. coerulea ephyrae, with concomitant negative consequences on predation and growth that are likely to alter predator–prey interactions, with consequent effects on community structure and ecosystem.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3