Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes

Author:

Kim Jung-HuiORCID,Lee Kyung Min,Kim Ji Won,Kweon Seong Hyeon,Moon Hyun-Seok,Yim TaeeunORCID,Kwak Sang KyuORCID,Lee Sang-YoungORCID

Abstract

AbstractDespite the enormous interest in high-areal-capacity Li battery electrodes, their structural instability and nonuniform charge transfer have plagued practical application. Herein, we present a cationic semi-interpenetrating polymer network (c-IPN) binder strategy, with a focus on the regulation of electrostatic phenomena in electrodes. Compared to conventional neutral linear binders, the c-IPN suppresses solvent-drying-induced crack evolution of electrodes and improves the dispersion state of electrode components owing to its surface charge-driven electrostatic repulsion and mechanical toughness. The c-IPN immobilizes anions of liquid electrolytes inside the electrodes via electrostatic attraction, thereby facilitating Li+ conduction and forming stable cathode–electrolyte interphases. Consequently, the c-IPN enables high-areal-capacity (up to 20 mAh cm–2) cathodes with decent cyclability (capacity retention after 100 cycles = 82%) using commercial slurry-cast electrode fabrication, while fully utilizing the theoretical specific capacity of LiNi0.8Co0.1Mn0.1O2. Further, coupling of the c-IPN cathodes with Li-metal anodes yields double-stacked pouch-type cells with high energy content at 25 °C (376 Wh kgcell−1/1043 Wh Lcell–1, estimated including packaging substances), demonstrating practical viability of the c-IPN binder for scalable high-areal-capacity electrodes.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference44 articles.

1. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1 (2016).

2. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).

3. Wu, J. et al. From Fundamental Understanding to Engineering Design of High-Performance Thick Electrodes for Scalable Energy-Storage Systems. Adv. Mater. 33, e2101275 (2021).

4. Kim, J. H., Kim, J. M., Cho, S. K., Kim, N. Y. & Lee, S. Y. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 13, 2541 (2022).

5. Kuang, Y., Chen, C., Kirsch, D. & Hu, L. Thick Electrode Batteries: Principles, Opportunities, and Challenges. Adv. Energy Mater. 9 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3