Regulating Anode‐Electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium‐Ion Batteries with High‐Nickel Layered Oxide Cathodes and Silicon‐Graphite Anodes

Author:

Jin Biyu1,Dolocan Andrei1,Liu Chen1,Cui Zehao1,Manthiram Arumugam1ORCID

Affiliation:

1. Materials Science and Engineering Program and Texas Materials Institute The University of Texas at Austin Austin Texas 78712 USA

Abstract

AbstractThe practical application of silicon (Si)‐based anodes faces challenges due to severe structural and interphasial degradations. These challenges are exacerbated in lithium‐ion batteries (LIBs) employing Si‐based anodes with high‐nickel layered oxide cathodes, as significant transition‐metal crossover catalyzes serious parasitic side reactions, leading to faster cell failure. While enhancing the mechanical properties of polymer binders has been acknowledged as an effective means of improving solid‐electrolyte interphase (SEI) stability on Si‐based anodes, an in‐depth understanding of how the binder chemistry influences the SEI is lacking. Herein, a zwitterionic binder with an ability to manipulate the chemical composition and spatial distribution of the SEI layer is designed for Si‐based anodes. It is evidenced that the electrically charged microenvironment created by the zwitterionic species alters the solvation environment on the Si‐based anode, featuring rich anions and weakened Li+‐solvent interactions. Such a binder‐regulated solvation environment induces a thin, uniform, robust SEI on Si‐based anodes, which is found to be the key to withstanding transition‐metal deposition and minimizing their detrimental impact on catalyzing electrolyte decomposition and devitalizing bulk Si. As a result, albeit possessing comparable mechanical properties to those of commercial binders, the zwitterionic binder enables superior cycling performances in high‐energy‐density LIBs under demanding operating conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3