Spontaneous emergence of rudimentary music detectors in deep neural networks

Author:

Kim GwangsuORCID,Kim Dong-KyumORCID,Jeong HawoongORCID

Abstract

AbstractMusic exists in almost every society, has universal acoustic features, and is processed by distinct neural circuits in humans even with no experience of musical training. However, it remains unclear how these innate characteristics emerge and what functions they serve. Here, using an artificial deep neural network that models the auditory information processing of the brain, we show that units tuned to music can spontaneously emerge by learning natural sound detection, even without learning music. The music-selective units encoded the temporal structure of music in multiple timescales, following the population-level response characteristics observed in the brain. We found that the process of generalization is critical for the emergence of music-selectivity and that music-selectivity can work as a functional basis for the generalization of natural sound, thereby elucidating its origin. These findings suggest that evolutionary adaptation to process natural sounds can provide an initial blueprint for our sense of music.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3