Privileged representational axes in biological and artificial neural networks

Author:

Khosla Meenakshi,Williams Alex H,McDermott Josh,Kanwisher Nancy

Abstract

AbstractHow do neurons code information? Recent work emphasizes properties of population codes, such as their geometry and decodable information, using measures that are blind to the native tunings (or ‘axes’) of neural responses. But might these representational axes matter, with some privileged systematically over others? To find out, we developed methods to test for alignment of neural tuning across brains and deep convolutional neural networks (DCNNs). Across both vision and audition, both brains and DCNNs consistently favored certain axes for representing the natural world. Moreover, the representational axes of DCNNs trained on natural inputs were aligned to those in perceptual cortices, such that axis-sensitive model-brain similarity metrics better differentiated competing models of biological sensory systems. We further show that coding schemes that privilege certain axes can reduce downstream wiring costs and improve generalization. These results motivate a new framework for understanding neural tuning in biological and artificial networks and its computational benefits.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3