Abstract
AbstractDeveloping highly efficient and reversible hydrogenation-dehydrogenation catalysts shows great promise for hydrogen storage technologies with highly desirable economic and ecological benefits. Herein, we show that reaction sites consisting of single Pt atoms and neighboring oxygen vacancies (VO) can be prepared on CeO2 (Pt1/CeO2) with unique catalytic properties for the reversible dehydrogenation and rehydrogenation of large molecules such as cyclohexane and methylcyclohexane. Specifically, we find that the dehydrogenation rate of cyclohexane and methylcyclohexane on such sites can reach values above 32,000 molH2 molPt−1 h−1, which is 309 times higher than that of conventional supported Pt nanoparticles. Combining of DRIFTS, AP-XPS, EXAFS, and DFT calculations, we show that the Pt1/CeO2 catalyst exhibits a super-synergistic effect between the catalytic Pt atom and its support, involving redox coupling between Pt and Ce ions, enabling adsorption, activation and reaction of large molecules with sufficient versatility to drive abstraction/addition of hydrogen without requiring multiple reaction sites.
Funder
DOE | Office of Energy Efficiency & Renewable Energy | Fuel Cell Technologies Office
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献