Duplicated ribosomal protein paralogs promote alternative translation and drug resistance

Author:

Malik Ghulam Mustafa,Catala Mathieu,Reulet Gaspard,Scott Michelle S.,Abou Elela SherifORCID

Abstract

AbstractRibosomes are often seen as monolithic machines produced from uniformly regulated genes. However, in yeast most ribosomal proteins come from duplicated genes. Here, we demonstrate that gene duplication may serve as a stress-adaptation mechanism modulating the global proteome through the differential expression of ribosomal protein paralogs. Our data indicate that the yeast paralog pair of the ribosomal protein L7/uL30 produces two differentially acetylated proteins. Under normal conditions most ribosomes incorporate the hypo-acetylated major form favoring the translation of genes with short open reading frames. Exposure to drugs, on the other hand, increases the production of ribosomes carrying the hyper-acetylated minor paralog that increases translation of long open reading frames. Many of these paralog-dependent genes encode cell wall proteins that could promote tolerance to drugs as their translation increases after exposure to drugs. Together our data suggest a mechanism of translation control that functions through a differential use of near-identical ribosomal protein isoforms.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3