3D-printed cellular tips for tuning fork atomic force microscopy in shear mode

Author:

Sun LiangdongORCID,Gu HongchengORCID,Liu Xiaojiang,Ni HaibinORCID,Li Qiwei,Zeng Yi,Chang Ning,Zhang Di,Chen HongyuanORCID,Li Zhiyong,Zhao XiangweiORCID,Gu ZhongzeORCID

Abstract

AbstractConventional atomic force microscopy (AFM) tips have remained largely unchanged in nanomachining processes, constituent materials, and microstructural constructions for decades, which limits the measurement performance based on force-sensing feedbacks. In order to save the scanning images from distortions due to excessive mechanical interactions in the intermittent shear-mode contact between scanning tips and sample, we propose the application of controlled microstructural architectured material to construct AFM tips by exploiting material-related energy-absorbing behavior in response to the tip–sample impact, leading to visual promotions of imaging quality. Evidenced by numerical analysis of compressive responses and practical scanning tests on various samples, the essential scanning functionality and the unique contribution of the cellular buffer layer to imaging optimization are strongly proved. This approach opens new avenues towards the specific applications of cellular solids in the energy-absorption field and sheds light on novel AFM studies based on 3D-printed tips possessing exotic properties.

Funder

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-absorbing porous materials: Bioinspired architecture and fabrication;Nano Research;2023-12-02

2. Tailored Microcantilever Optimization for Multifrequency Force Microscopy;Advanced Science;2023-10-22

3. Acousto-optic Scanning Spatial-switching Multiphoton Lithography;International Journal of Extreme Manufacturing;2023-06-21

4. 3D printed fiber-optic nanomechanical bioprobe;International Journal of Extreme Manufacturing;2023-02-10

5. Micro 3D printing of a functional MEMS accelerometer;Microsystems & Nanoengineering;2022-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3