Affiliation:
1. Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering Ulster University Belfast BT15 1AP UK
Abstract
AbstractMicrocantilevers are at the heart of atomic force microscopy (AFM) and play a significant role in AFM‐based techniques. Recent advancements in multifrequency AFM require the simultaneous excitation and detection of multiple eigenfrequencies of microcantilevers to assess more data channels to quantify the material properties. However, to achieve higher spatiotemporal resolution there is a need to optimize the structure of microcantilevers. In this study, the architecture of the cantilever with gold nanoparticles using a dip‐coating method is modified, aiming to tune the higher eigenmodes of the microcantilever as integer multiples of its fundamental frequency. Through the theoretical methodology and simulative model, that integer harmonics improve the coupling in multifrequency AFM measurements is demonstrated, leading to enhanced image quality and resolution. Furthermore, via the combined theoretical‐experimental approach, the interplay between induced mass and stiffness change of the modified cantilever depending on the attached particle location, size, mass, and geometry is found. To validate the results of this predictive model, tapping‐mode AFM is utilized and bimodal Amplitude Modulation AFM techniques to examine and quantify the impact of tuning higher‐order eigenmodes on the imaging quality of a polystyrene‐polymethylmethacrylate (PS‐PMMA) block co‐polymer assembly deposited on a glass slide and Highly Ordered Pyrolytic Graphite (HOPG).
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献