Tailored Microcantilever Optimization for Multifrequency Force Microscopy

Author:

Bhattacharya Gourav1ORCID,Lionadi Indrianita1,Stevenson Andrew1,Ward Joanna1ORCID,Payam Amir Farokh1ORCID

Affiliation:

1. Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering Ulster University Belfast BT15 1AP UK

Abstract

AbstractMicrocantilevers are at the heart of atomic force microscopy (AFM) and play a significant role in AFM‐based techniques. Recent advancements in multifrequency AFM require the simultaneous excitation and detection of multiple eigenfrequencies of microcantilevers to assess more data channels to quantify the material properties. However, to achieve higher spatiotemporal resolution there is a need to optimize the structure of microcantilevers. In this study, the architecture of the cantilever with gold nanoparticles using a dip‐coating method is modified, aiming to tune the higher eigenmodes of the microcantilever as integer multiples of its fundamental frequency. Through the theoretical methodology and simulative model, that integer harmonics improve the coupling in multifrequency AFM measurements is demonstrated, leading to enhanced image quality and resolution. Furthermore, via the combined theoretical‐experimental approach, the interplay between induced mass and stiffness change of the modified cantilever depending on the attached particle location, size, mass, and geometry is found. To validate the results of this predictive model, tapping‐mode AFM is utilized and bimodal Amplitude Modulation AFM techniques to examine and quantify the impact of tuning higher‐order eigenmodes on the imaging quality of a polystyrene‐polymethylmethacrylate (PS‐PMMA) block co‐polymer assembly deposited on a glass slide and Highly Ordered Pyrolytic Graphite (HOPG).

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3