Abstract
AbstractIonic-conductive polymers are appealing electrolyte materials for solid-state lithium-based batteries. However, these polymers are detrimentally affected by the electrochemically-inactive anion migration that limits the ionic conductivity and accelerates cell failure. To circumvent this issue, we propose the use of polyvinyl ferrocene (PVF) as positive electrode active material. The PVF acts as an anion-acceptor during redox processes, thus simultaneously setting anions and lithium ions as effective charge carriers. We report the testing of various Li||PVF lab-scale cells using polyethylene oxide (PEO) matrix and Li-containing salts with different anions. Interestingly, the cells using the PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) solid electrolyte deliver an initial capacity of 108 mAh g−1 at 100 μA cm−2 and 60 °C, and a discharge capacity retention of 70% (i.e., 70 mAh g−1) after 2800 cycles at 300 μA cm−2 and 60 °C. The Li|PEO-LiTFSI|PVF cells tested at 50 μA cm−2 and 30 °C can also deliver an initial discharge capacity of around 98 mAh g−1 with an electrolyte ionic conductivity in the order of 10−5 S cm−1.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献