High‐Voltage Single‐Ion Covalent Organic Framework Electrolytes Enabled by Nitrile Migration Ladders for Lithium Metal Batteries

Author:

Li Weiping12ORCID,Han Shantao3,Xiao Chenxi12,Yan Jingying12,Wu Baifei12,Wen Peng3,Lin Jun2,Chen Mao3,Lin Xinrong12ORCID

Affiliation:

1. Department Division of Natural and Applied Sciences Duke Kunshan University Kunshan, Jiangsu 215306 China

2. School of Chemical Science and Technology Yunnan University Kunming 650091 China

3. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai 200433 China

Abstract

AbstractThe poor electrochemical stability window and low ionic conductivity in solid‐state electrolytes hinder the development of safe, high‐voltage, and energy‐dense lithium metal batteries. Herein, taking advantage of the unique electronic effect of nitrile groups, we designed a novel azanide‐based single‐ion covalent organic framework (CN−iCOF) structure that possesses effective Li+ transport and high‐voltage stability in lithium metal batteries. Density functional theory (DFT) calculations and molecular dynamics (MD) revealed that electron‐withdrawing nitrile groups not only resulted in an ultralow HOMO energy orbital but also enhanced Li+ dissociation through charge delocalization, leading to a high tLi+ of 0.93 and remarkable oxidative stability up to 5.6 V (vs. Li+/Li) simultaneously. Moreover, cyanation leveraging Strecker reaction transformed reversible imine‐linkage to a stable sp3‐carbon‐containing azanide anion, which facilitated contorted alignment of transport “ladders” along the one‐dimensional anionic channels and the ionic conductivity could reach 1.33×10−5 S cm−1 at ambient temperature without any additives. As a result, CN−iCOF allowed operation of solid‐state lithium metal batteries with high‐voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), demonstrating stable lithium deposition up to 1,100 h and reversible battery cycling at ambient temperature up to 4.5 V, shedding light on the importance of discovering new functionality for forthcoming high‐performance batteries.

Funder

National Natural Science Foundation of China

Duke Kunshan University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3