Abstract
AbstractThermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower $$S_{xx} \sim 1.1 \times 10^3 \, \mu \, {\mathrm{V}} \, {\mathrm{K}}^{ - 1}$$
S
x
x
~
1.1
×
1
0
3
μ
V
K
−
1
and giant power factor $$\sim 525 \, \mu \, {\mathrm{W}} \, {\mathrm{cm}}^{ - 1} \, {\mathrm{K}}^{ - 2}$$
~
525
μ
W
cm
−
1
K
−
2
are observed at ~40 K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.
Funder
DOE | SC | Basic Energy Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献