Central American mountains inhibit eastern North Pacific seasonal tropical cyclone activity

Author:

Fu DanORCID,Chang PingORCID,Patricola Christina M.ORCID,Saravanan R.,Liu Xue,Beck Hylke E.ORCID

Abstract

AbstractThe eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3