Abstract
AbstractSetting appropriate conservation strategies in a multi-threat world is a challenging goal, especially because of natural complexity and budget limitations that prevent effective management of all ecosystems. Safeguarding the most threatened ecosystems requires accurate and integrative quantification of their vulnerability and their functioning, particularly the potential loss of species trait diversity which imperils their functioning. However, the magnitude of threats and associated biological responses both have high uncertainties. Additionally, a major difficulty is the recurrent lack of reference conditions for a fair and operational measurement of vulnerability. Here, we present a functional vulnerability framework that incorporates uncertainty and reference conditions into a generalizable tool. Through in silico simulations of disturbances, our framework allows us to quantify the vulnerability of communities to a wide range of threats. We demonstrate the relevance and operationality of our framework, and its global, scalable and quantitative comparability, through three case studies on marine fishes and mammals. We show that functional vulnerability has marked geographic and temporal patterns. We underline contrasting contributions of species richness and functional redundancy to the level of vulnerability among case studies, indicating that our integrative assessment can also identify the drivers of vulnerability in a world where uncertainty is omnipresent.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference92 articles.
1. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).
2. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
3. Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).
4. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).
5. Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献