Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region

Author:

Zhu YuyanORCID,Wang YangORCID,Pang Xingchen,Jiang Yongbo,Liu Xiaoxian,Li Qing,Wang ZhenORCID,Liu ChunsenORCID,Hu WeidaORCID,Zhou PengORCID

Abstract

AbstractCutting-edge mid-wavelength infrared (MWIR) sensing technologies leverage infrared photodetectors, memory units, and computing units to enhance machine vision. Real-time processing and decision-making challenges emerge with the increasing number of intelligent pixels. However, current operations are limited to in-sensor computing capabilities for near-infrared technology, and high-performance MWIR detectors for multi-state switching functions are lacking. Here, we demonstrate a non-volatile MoS2/black phosphorus (BP) heterojunction MWIR photovoltaic detector featuring a semi-floating gate structure design, integrating near- to mid-infrared photodetection, memory and computing (PMC) functionalities. The PMC device exhibits the property of being able to store a stable responsivity, which varies linearly with the stored conductance state. Significantly, device weights (stable responsivity) can be programmed with power consumption as low as 1.8 fJ, and the blackbody peak responsivity can reach 1.68 A/W for the MWIR band. In the simulation of Faster Region with convolution neural network (CNN) based on the FLIR dataset, the PMC hardware responsivity weights can reach 89% mean Average Precision index of the feature extraction network software weights. This MWIR photovoltaic detector, with its versatile functionalities, holds significant promise for applications in advanced infrared object detection and recognition systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3