Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications

Author:

Chen DekangORCID,March Stephen D.ORCID,Jones Andrew H.ORCID,Shen YangORCID,Dadey Adam A.ORCID,Sun Keye,McArthur J. AndrewORCID,Skipper Alec M.ORCID,Xue Xingjun,Guo Bingtian,Bai JunwuORCID,Bank Seth R.ORCID,Campbell Joe C.ORCID

Abstract

AbstractThe fast development of mid-wave infrared photonics has increased the demand for high-performance photodetectors that operate in this spectral range. However, the signal-to-noise ratio, regarded as a primary figure of merit for mid-wave infrared detection, is strongly limited by the high dark current in narrow-bandgap materials. Therefore, conventional mid-wave infrared photodetectors such as HgCdTe require cryogenic temperatures to avoid excessively high dark current. To address this challenge, we report an avalanche photodiode design using photon-trapping structures to enhance the quantum efficiency and minimize the absorber thickness to suppress the dark current. The device exhibits high quantum efficiency and dark current density that is nearly three orders of magnitude lower than that of the state-of-the-art HgCdTe avalanche photodiodes and nearly two orders lower than that of previously reported AlInAsSb avalanche photodiodes that operate at 2 µm. Additionally, the bandwidth of these avalanche photodiodes reaches ~7 GHz, and the gain–bandwidth product is over 200 GHz; both are more than four times those of previously reported 2 µm avalanche photodiodes.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

United States Department of Defense | Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3