Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary

Author:

Wei JiakeORCID,Feng BinORCID,Tochigi Eita,Shibata NaoyaORCID,Ikuhara YuichiORCID

Abstract

AbstractGrain boundaries (GBs) are considered as the effective sinks for point defects, which improve the radiation resistance of materials. However, the fundamental mechanisms of how the GBs absorb and annihilate point defects under irradiation are still not well understood at atomic scale. With the aid of the atomic resolution scanning transmission electron microscope, we experimentally investigate the atomistic mechanism of point defects absorption by a ∑31 GB in α-Al2O3 under high energy electron beam irradiation. It is shown that a disconnection pair is formed, during which all the Al atomic columns are tracked. We demonstrate that the formation of the disconnection pair is proceeded with disappearing of atomic columns in the GB core, which suggests that the GB absorbs vacancies. Such point defect absorption is attributed to the nucleation and climb motion of disconnections. These experimental results provide an atomistic understanding of how GBs improve the radiation resistance of materials.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3