Accelerating network layouts using graph neural networks

Author:

Both Csaba,Dehmamy Nima,Yu Rose,Barabási Albert-LászlóORCID

Abstract

AbstractGraph layout algorithms used in network visualization represent the first and the most widely used tool to unveil the inner structure and the behavior of complex networks. Current network visualization software relies on the force-directed layout (FDL) algorithm, whose high computational complexity makes the visualization of large real networks computationally prohibitive and traps large graphs into high energy configurations, resulting in hard-to-interpret “hairball” layouts. Here we use Graph Neural Networks (GNN) to accelerate FDL, showing that deep learning can address both limitations of FDL: it offers a 10 to 100 fold improvement in speed while also yielding layouts which are more informative. We analytically derive the speedup offered by GNN, relating it to the number of outliers in the eigenspectrum of the adjacency matrix, predicting that GNNs are particularly effective for networks with communities and local regularities. Finally, we use GNN to generate a three-dimensional layout of the Internet, and introduce additional measures to assess the layout quality and its interpretability, exploring the algorithm’s ability to separate communities and the link-length distribution. The novel use of deep neural networks can help accelerate other network-based optimization problems as well, with applications from reaction-diffusion systems to epidemics.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable software estimation with graph neural networks and orthogonal array tunning method;Information Processing & Management;2024-09

2. Measuring Entanglement in Physical Networks;Physical Review Letters;2024-08-13

3. Multi-point synchronous temporary grounding wire detection device based on convolutional neural networks;International Journal of Electrical Power & Energy Systems;2024-07

4. Towards equitable AI in oncology;Nature Reviews Clinical Oncology;2024-06-07

5. Scalable Differentiable Folding for mRNA Design;2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3