Machine learning discovery of missing links that mediate alternative branches to plant alkaloids

Author:

Vavricka Christopher J.ORCID,Takahashi ShunsukeORCID,Watanabe Naoki,Takenaka Musashi,Matsuda Mami,Yoshida Takanobu,Suzuki Ryo,Kiyota HiromasaORCID,Li Jianyong,Minami Hiromichi,Ishii JunORCID,Tsuge Kenji,Araki Michihiro,Kondo AkihikoORCID,Hasunuma TomohisaORCID

Abstract

AbstractEngineering the microbial production of secondary metabolites is limited by the known reactions of correctly annotated enzymes. Therefore, the machine learning discovery of specialized enzymes offers great potential to expand the range of biosynthesis pathways. Benzylisoquinoline alkaloid production is a model example of metabolic engineering with potential to revolutionize the paradigm of sustainable biomanufacturing. Existing bacterial studies utilize a norlaudanosoline pathway, whereas plants contain a more stable norcoclaurine pathway, which is exploited in yeast. However, committed aromatic precursors are still produced using microbial enzymes that remain elusive in plants, and additional downstream missing links remain hidden within highly duplicated plant gene families. In the current study, machine learning is applied to predict and select plant missing link enzymes from homologous candidate sequences. Metabolomics-based characterization of the selected sequences reveals potential aromatic acetaldehyde synthases and phenylpyruvate decarboxylases in reconstructed plant gene-only benzylisoquinoline alkaloid pathways from tyrosine. Synergistic application of the aryl acetaldehyde producing enzymes results in enhanced benzylisoquinoline alkaloid production through hybrid norcoclaurine and norlaudanosoline pathways.

Funder

MEXT | Japan Society for the Promotion of Science

Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering

New Energy and Industrial Technology Development Organization

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3