Abstract
AbstractFunctional annotation of open reading frames in microbial genomes remains substantially incomplete. Enzymes constitute the most prevalent functional gene class in microbial genomes and can be described by their specific catalytic functions using the Enzyme Commission (EC) number. Consequently, the ability to predict EC numbers could substantially reduce the number of un-annotated genes. Here we present a deep learning model, DeepECtransformer, which utilizes transformer layers as a neural network architecture to predict EC numbers. Using the extensively studiedEscherichia coliK-12 MG1655 genome, DeepECtransformer predicted EC numbers for 464 un-annotated genes. We experimentally validated the enzymatic activities predicted for three proteins (YgfF, YciO, and YjdM). Further examination of the neural network’s reasoning process revealed that the trained neural network relies on functional motifs of enzymes to predict EC numbers. Thus, DeepECtransformer is a method that facilitates the functional annotation of uncharacterized genes.
Funder
Ministry of Science and ICT
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献