Kapitza-resistance-like exciton dynamics in atomically flat MoSe2-WSe2 lateral heterojunction

Author:

Lamsaadi HassanORCID,Beret Dorian,Paradisanos IoannisORCID,Renucci Pierre,Lagarde Delphine,Marie XavierORCID,Urbaszek Bernhard,Gan Ziyang,George AntonyORCID,Watanabe KenjiORCID,Taniguchi TakashiORCID,Turchanin AndreyORCID,Lombez LaurentORCID,Combe NicolasORCID,Paillard Vincent,Poumirol Jean-MarieORCID

Abstract

AbstractBeing able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe2-WSe2) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics news on the Internet: November 2023;Uspekhi Fizicheskih Nauk;2023-10

2. Physics news on the Internet: November 2023;Physics-Uspekhi;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3