Abstract
AbstractElectrical control of magnetism in single-molecule magnets with peculiar quantum magnetic behaviours has promise for applications in molecular electronics and quantum computing. Nevertheless, such kind of magnetoelectric effects have not been achieved in such materials. Herein, we report the successful realization of significant magnetoelectric effects by introducing ferroelectricity into a dysprosium-based single-molecule magnet through spatial cooperation between flexible organic ligands and halide ions. The stair-shaped magnetization hysteresis loop, alternating current susceptibility, and magnetic relaxation can be directly modulated by applying a moderate electric field. Conversely, the electric polarization can be modulated by applying a small magnetic field. In addition, a resonant magnetodielectric effect is clearly observed, which enables detection of quantum tunnelling of magnetization by a simple electrical measurement. The integration of ferroelectricity into single-molecule magnets not only broadens the family of single-molecule magnets but also makes electrical detection and modulation of the quantum tunnelling of magnetization a reality.
Funder
Ministry of Education of the People's Republic of China
National Natural Science Foundation of China
Frontiers Science Center for New Organic Matter, Nankai University
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献