Rapid age-grading and species identification of natural mosquitoes for malaria surveillance

Author:

Siria Doreen J.,Sanou RogerORCID,Mitton Joshua,Mwanga Emmanuel P.ORCID,Niang AbdoulayeORCID,Sare Issiaka,Johnson Paul C. D.ORCID,Foster Geraldine M.,Belem Adrien M. G.,Wynne KlaasORCID,Murray-Smith RoderickORCID,Ferguson Heather M.ORCID,González-Jiménez MarioORCID,Babayan Simon A.ORCID,Diabaté AbdoulayeORCID,Okumu Fredros O.,Baldini FrancescoORCID

Abstract

AbstractThe malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of mosquito vectors. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We present a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquito cuticle that simultaneously identifies the species and age class of three main malaria vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer learning model that learns and predicts the age of new wild populations in Tanzania and Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the impact of simulated control interventions on mosquito populations, measured as a shift in their age structures. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.

Funder

RCUK | Medical Research Council

Royal Society

Bill and Melinda Gates Foundation

AXA Research Fund

European Molecular Biology Organization

University of Glasgow

RCUK | Engineering and Physical Sciences Research Council

Leverhulme Trust

EC | Horizon 2020 Framework Programme

RCUK | MRC | Medical Research Foundation

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3