Predicting the age of field Anopheles mosquitoes using mass spectrometry and deep learning

Author:

Mohammad Noshine1ORCID,Naudion Pauline1ORCID,Dia Abdoulaye Kane2ORCID,Boëlle Pierre-Yves3ORCID,Konaté Abdoulaye2,Konaté Lassana2ORCID,Niang El Hadji Amadou2ORCID,Piarroux Renaud1,Tannier Xavier4,Nabet Cécile1ORCID

Affiliation:

1. Sorbonne Université, Inserm, Institut Pierre-Louis d’Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France.

2. Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal.

3. Sorbonne Université, Inserm, Institut Pierre Louis d'Épidémiologie et de Santé Publique, IPLESP, 75012 Paris, France.

4. Sorbonne Université, Inserm, Université Sorbonne Paris Nord, Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France.

Abstract

Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.

Publisher

American Association for the Advancement of Science (AAAS)

Reference58 articles.

1. World Health Organization Global Vector Control Response 2017–2030 (World Health Organization 2017); https://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978-eng.pdf.

2. World Health Organization “World malaria report 2023” (World Health Organization 2023); https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023.

3. Epidemiological basis of malaria control;Macdonald G.;Bull. World Health Organ.,1956

4. H. M. Gilles D. A. Warrell H. M. Gilles Essential Malariology (Arnold London ed. 4 2002).

5. B. Lambert A. North H. C. J. Godfray A meta-analysis of longevity estimates of mosquito vectors of disease. bioRxiv 2022.05.30.494059 [Preprint Ecology] (2022). https://doi.org/10.1101/2022.05.30.494059.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3