Abstract
AbstractThe mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by 63,65Cu-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2−xLaxCuO6 superconductor, induced by in-plane strain exceeding ∣ε∣ = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates.
Funder
MEXT | Japan Society for the Promotion of Science
Murata Science Foundation
Publisher
Springer Science and Business Media LLC