Abstract
AbstractArtificial Intelligence (AI) models for medical diagnosis often face challenges of generalizability and fairness. We highlighted the algorithmic unfairness in a large thyroid ultrasound dataset with significant diagnostic performance disparities across subgroups linked causally to sample size imbalances. To address this, we introduced the Quasi-Pareto Improvement (QPI) approach and a deep learning implementation (QP-Net) combining multi-task learning and domain adaptation to improve model performance among disadvantaged subgroups without compromising overall population performance. On the thyroid ultrasound dataset, our method significantly mitigated the area under curve (AUC) disparity for three less-prevalent subgroups by 0.213, 0.112, and 0.173 while maintaining the AUC for dominant subgroups; we also further confirmed the generalizability of our approach on two public datasets: the ISIC2019 skin disease dataset and the CheXpert chest radiograph dataset. Here we show the QPI approach to be widely applicable in promoting AI for equitable healthcare outcomes.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献