Funder
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology
Reference393 articles.
1. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Conf. on Fairness, Accountability and Transparency 77–91 (PMLR, 2018).
2. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).
3. Pierson, E., Cutler, D. M., Leskovec, J., Mullainathan, S. & Obermeyer, Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat. Med. 27, 136–140 (2021).
4. Hooker, S. Moving beyond ‘algorithmic bias is a data problem’. Patterns 2, 100241 (2021).
5. McCradden, M. D., Joshi, S., Mazwi, M. & Anderson, J. A. Ethical limitations of algorithmic fairness solutions in health care machine learning. Lancet Digit. Health 2, e221–e223 (2020).
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献