Abstract
AbstractMetal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this work, we leverage the low formation energy of metal halide perovskites to demonstrate multicolor reversible chromism. We synthesized layered Ruddlesden-Popper FAn+1PbnX3n+1 (FA = formamidinium, X = I, Br; n = number of layers = 1, 2, 3 … ∞) and reversibly tune the dimensionality (n) by modulating the strength and number of H-bonds in the system. H-bonding was controlled by exposure to solvent vapor (solvatochromism) or temperature change (thermochromism), which shuttles FAX salt pairs between the FAn+1PbnX3n+1 domains and adjacent FAX “reservoir” domains. Unlike traditional chromic materials that only offer a single-color transition, FAn+1PbnX3n+1 films reversibly switch between multiple colors including yellow, orange, red, brown, and white/colorless. Each colored phase exhibits distinct optoelectronic properties characteristic of 2D superlattice materials with tunable quantum well thickness.
Funder
DOE | Office of Energy Efficiency & Renewable Energy | Building Technologies Office
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献