All-photonic artificial synapses based on photochromic perovskites for noncontact neuromorphic visual perception

Author:

Zhou Xing,Hu Fangzhen,Hou Qing,Hu JinmingORCID,Wang Yimeng,Chen XiORCID

Abstract

AbstractRecently optoelectronic synapses generating light-driven electrical memories have played a vital role in the neuromorphic computing of visual perception. However, all the optoelectronic synapses demonstrate photoelectric conversion. Peripheral circuits are used for contact photocurrent measurement, leading to significant energy consumption and impeding the evolution of optical wireless communication. It is crucial to develop noncontact neuromorphic visual perception based on light-driven photonic memories. Herein, we report all-photonic artificial synapses based on photochromic perovskites. Triggered by ultraviolet and visible light pulses, cesium lead iodide bromine induces a structural disorder. Optical transmittance changes induced by the disorder last after the pulses are gone. Next, the photonic memories are propagated in the air and processed by a recurrent neural network. The accuracy of binary image recognition is instantly stabilized at 1.0, and accuracy above 0.8 after 7 epochs is achieved in the recognition of digitals from 0 to 9. The all-photonic synapses realize remote perception with zero in-situ energy consumption and enable artificial sensory systems with low-power computation, remote control, and ultrahigh propagation speed.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3