Abstract
AbstractRatiometric luminescent oxygen sensing based on dual fluorescence and phosphorescence emission in a single matrix is highly desirable, yet the designed synthesis remains challenging. Silver-chalcogenolate-cluster-based metal-organic frameworks that combine the advantages of silver clusters and metal-organic frameworks have displayed unique luminescent properties. Herein, we rationally introduce −NH2 groups on the linkers of a silver-chalcogenolate-cluster-based metal-organic framework (Ag12bpy-NH2) to tune the intersystem crossing, achieving a dual fluorescence-phosphorescence emission from the same linker chromophore. The blue fluorescence component has a 100-nm gap in wavelength and 8,500,000-fold difference in lifetime relative to a yellow phosphorescence component. Ag12bpy-NH2 quantifies oxygen during hypoxia with the limit of detection of as low as 0.1 ppm and 0.3 s response time, which is visualized by the naked eye. Our work shows that metal cluster-based MOFs have great potential in luminescent sensing, and the longer-lived charge-separated states could find more photofunctional applications in solar energy transformation and photocatalysis.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
153 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献