Abstract
AbstractAlkylamines are ubiquitous in pharmaceuticals, materials and agrochemicals. The Mannich reaction is a well-known three-component reaction for preparing alkylamines and has been widely used in academic research and industry. However, the nucleophilic components in this process rely on C(sp2)−H and activated C(sp3)−H bonds while the unactivated C(sp3)−H bonds involved Mannich alkylamination is a long-standing challenge. Here, we report an unprecedented multicomponent double Mannich alkylamination for both C(sp2)−H and unactivated benzylic C(sp3)−H bonds. In this process, various 3-alkylbenzofurans, formaldehyde and alkylamine hydrochlorides assemble efficiently to furnish benzofuran-fused piperidines. Mechanistic studies and density functional theory (DFT) calculations revealed a distinctive pathway that a multiple Mannich reaction and retro-Mannich reaction of benzofuran and dehydrogenation of benzylic C(sp3)−H bonds were key steps to constitute the alkylamination. This protocol furnishes a Mannich alkylamine synthesis from unusual C–H inputs to access benzofuran-fused piperidines with exceptional structural diversity, molecular complexity and drug-likeness. Therefore, this work opens a distinctive vision for the alkylamination of unactivated C(sp3)−H bonds, and provides a powerful tool in diversity-oriented synthesis (DOS) and drug discovery.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献